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Abstract
There has been increasing interest in developing and accelerat-
ing mixed-precision Matrix-Multiply-Accumulate operations in
GPGPUs for Deep Learning workloads. However, existing open-
source RTL implementations of inner dot product units rely on
discrete arithmetic units, leading to suboptimal throughput and
poor resource utilization. To address these challenges, we propose
a scalable mixed-precision dot product unit that integrates floating-
point and integer arithmetic pipelines within a singular fused ar-
chitecture, implemented as part of the open-source RISC-V based
Vortex GPGPU’s Tensor Core Unit extension. Our design supports
low-precision multiplication in FP16/BF16/FP8/BF8/INT8/UINT4
formats and higher-precision accumulation in FP32/INT32, with
an extensible framework for adding and evaluating other custom
representations in the future. Experimental results demonstrate
4-cycle operation latency at 362.2 MHz clock frequency on the
AMD Xilinx Alveo U55C FPGA, delivering an ideal filled pipeline
throughput of 5.795 GFlops in a 4-thread per warp configuration.
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1 Introduction
MicrobenchmarkingNVIDIAVolta Architecture’s [12]Warp-Matrix-
Multiply-Accumulate (WMMA) instructions have demonstrated
that each "Tensor Core" is essentially a grid of 16 mixed-precision
Four-Element Dot Product (FEDP) units scheduled in parallel, com-
pleting a 4×4×4 matrix multiply accumulate per cycle in a 4-stage
pipeline [7, 13]. Fig. 1 illustrates how we adopt a 2×2 grid of FEDP
units to form a Tensor Core Unit (TCU) within a Vortex GPGPU
[16] sub-core in a 4-thread per warp scheduler configuration.
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Figure 1: Sub-Core in the Vortex TCU Extended Architecture

To address the lack of high-performance fused dot product im-
plementations in the open-source GPGPU design space:

• We propose a configurable 4-stage fused dot product ar-
chitecture supporting low-precision (FP16/BF16/FP8/BF8)
multiplication with FP32 accumulation; implemented as part
of the Vortex GPGPU’s in development TCU extension [15]

• We describe a unified pipeline methodology for integrat-
ing integer arithmetic within the floating-point datapath,
incurring minimal overhead by maximizing resource reuse

• We demonstrate significant performance improvements over
an equivalent Berkeley HardFloat [6] based implementation,
achieving 362.2MHz maximum operational frequency and
1.448 GFLOPS single-cycle throughput

2 Mixed-Precision Floating-Point Datapath
2.1 Key Arithmetic Submodules
The floating-point dot product pipeline requires several multi-
operand additions. Initially, we adopted a 2-operand adder reduction
tree structure, which exhibited high latency due to accumulated
carry propagation delays. We found Carry-Save Adders (CSAs)
to be particularly suitable for our use case since they optimally
reduce multiple operands without prior carry dependencies. The
CSA uses recursively generated 4:2 compressors, with 3:2 compres-
sors (Full Adders) handling remaining 3-operand cases, before final
summation via Kogge-Stone Adders (KSAs). KSAs outperform
Carry-Look-Ahead designs by sacrificing area efficiency to achieve
lower fanout at every stage due to their parallel prefix tree struc-
tures. We also implementWallace Tree Multiplierswhose partial
products are reduced effectively using CSA structures. We decide
against incorporating Radix-4 booth recoding in our design, since
the bit-pair encoding overhead outweighs the benefit of halving
partial products at our target 4-11 bit widths.

2.2 Low-Precision Multiplication, Maximum
Exponent and Significand Alignment

The first two pipeline stages perform low-precision multiplication
in parallel to finding the maximum exponent for significand align-
ment. Inputs are packed as FP16/BF16 pairs or FP8/BF8 quads per
32-bit register. Dedicated Wallace tree multipliers process full man-
tissas (including implicit bits) for each dot product element, with
FP8/BF8 formats requiring additional multiplication and summa-
tion to maintain pipeline consistency. Format selection multiplexers
route the results using 4-bit selectors, hence generating raw E8M25
intermediates for accumulation. Exponent addition and FP32 expo-
nent bias conversion (as required) are performed as follows:

𝐸𝑋𝑃𝐹𝑃32 = 𝐸𝑋𝑃𝐴 + 𝐸𝑋𝑃𝐵 + 𝐵𝐼𝐴𝑆𝐹𝑃32 − (2 × 𝐵𝐼𝐴𝑆𝐹𝑃16) + 1



Vortex Workshop MICRO ’25, October 18, 2025, Seoul, Korea Nikhil Rout and Blaise Tine

VA

VB

C

D

Figure 2: Mixed-Precision Fused Dot Product 4-Stage Pipeline Architecture

Maximum exponent identification builds upon a novel subtractor-
based comparator architecture [14] computing all N×N pairwise
exponent differences concurrently. Each comparison generates a
sign bit indicating relative magnitude, thus forming a difference
matrix. The maximum exponent index is determined through com-
binational logic that finds the element where all left comparisons
are negative (1) and all right comparisons are positive (0), produc-
ing a one-hot selection vector. This approach provides O(1) depth
versus traditional reduction tree comparator schemes while also
computing shift amounts by simply negating the stored differences.
Product significands are then aligned using these shift amounts
and sign-extended before passing to the next stage.

2.3 Accumulation, Normalization and Rounding
Traditional approaches separately accumulate the addend "C" after
dot product summation, requiring additional 2-operand alignment,
normalization, and rounding that increases both rounding error and
critical path delay. Our design integrates addend processing from
the first pipeline stage, where C’s exponent participates in max-
imum exponent finding and its significand undergoes alignment
and sign-extension alongside product terms. The 25-bit aligned,
sign-extended significands and addend are further sign-extended
(FP) or zero-extended (INT) to 25 + log2 𝑁 -bits to handle signed
arithmetic correctly. The multi-operand summation utilizes the
recursive 4:2 CSA with 3:2 fallback to produce the accumulation
result. Finally, standard Leading Zero Counter (LZC) normalization
and Round-to-nearest-even (RNE) rounding is performed.

3 Fusing the Integer Pipeline
Integer dot product operations require multiple arithmetic compo-
nents already present in the FP datapath [3, 4]. Fusing both pipelines
omits the need for an arbiter and scheduling two separate execution
units via the same interface. We support INT8 and UINT4 formats,
with INT8 inputs undergoing two’s complement conversion be-
fore multiplication to maintain compact bit-width configurations.
Products are sign-extended to 25 bits for accumulator compatibil-
ity. Rather than forwarding the complete 32-bit addend C to the
final stage, we employ a novel splitting strategy that partitions C
addition into two components. The lower 25 bits accumulate in
the existing FP accumulation module, while only the upper 7 bits
and product sign bits propagate through the pipeline, reducing
intermediate register overhead. The final integer result’s upper 7
bits are constructed in parallel with FP normalization and rounding,
before concatenation with the lower 25-bit accumulation result.

4 Evaluation
We evaluate our FEDP design against equivalent HardFloat [6] and
Xilinx DSP IP based discrete implementations, targeting 300MHz
clock frequency on the AMD Xilinx Alveo U55C FPGA.

Table 1: Comparison of Timing Reports (FP16/BF16)

Version Critical Path 𝐹𝑚𝑎𝑥 Latency Throughput1
(ns) (MHz) (cycles) (GFLOPS)

Xilinx DSP 2.965 337.3 42 0.128
HardFloat 3.679 271.8 13 0.334
Proposed 2.761 362.2 4 1.448

Xilinx DSP HardFloat Proposed*
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Figure 3: Comparison of Resource Utilization Reports2

5 Related Work
Although numerous efforts have optimized mixed-precision Fused-
Multiply-Add and dot product units [2, 9, 14, 17], many academic
projects involving transprecision computing, including Gemmini
[5], Virgo [8], and Rocket Chip [1], still rely on Berkeley HardFloat
modules [6]. Similarly, another Tensor Core implementation inte-
grated into the Vortex framework [11] utilized FPnew [10]. These
discrete approaches suffer from high latency, accumulated rounding
errors, and poor area efficiency compared to our fused architecture.

6 Conclusion
This work presents a configurable high-performance fused dot
product microarchitecture. Future work includes exploring shared
significand multipliers, sparse-enabled FEDP and energy efficiency.
1Single-cycle Throughput = (16 / Latency) × 𝐹𝑚𝑎𝑥 )
2Proposed includes FP8/BF8/INT8/UINT4 support LUT count
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