
A Configurable Mixed-Precision Fused Dot Product Unit for
GPGPU Tensor Computation

Nikhil Rout
Vellore Institute of Technology, Chennai

Hyderabad, India
nikhilrout97@gmail.com

Blaise Tine
University of California, Los Angeles

Los Angeles, USA
blaisetine@cs.ucla.edu

Abstract
There has been increasing interest in developing and accelerat-
ing mixed-precision Matrix-Multiply-Accumulate operations in
GPGPUs for Deep Learning workloads. However, existing open-
source RTL implementations of inner dot product units rely on
discrete arithmetic units, leading to suboptimal throughput and
poor resource utilization. To address these challenges, we propose
a scalable mixed-precision dot product unit that integrates floating-
point and integer arithmetic pipelines within a singular fused ar-
chitecture, implemented as part of the open-source RISC-V based
Vortex GPGPU’s Tensor Core Unit extension. Our design supports
low-precision multiplication in FP16/BF16/FP8/BF8/INT8/UINT4
formats and higher-precision accumulation in FP32/INT32, with
an extensible framework for adding and evaluating other custom
representations in the future. Experimental results demonstrate
4-cycle operation latency at 362.2 MHz clock frequency on the
AMD Xilinx Alveo U55C FPGA, delivering an ideal filled pipeline
throughput of 5.795 GFlops in a 4-thread per warp configuration.

CCS Concepts
• Computer systems organization→ Multicore architectures.

Keywords
GPGPU, Microarchitecture, Mixed-Precision, Fused Dot Product

1 Introduction
MicrobenchmarkingNVIDIAVolta Architecture’s [12]Warp-Matrix-
Multiply-Accumulate (WMMA) instructions have demonstrated
that each "Tensor Core" is essentially a grid of 16 mixed-precision
Four-Element Dot Product (FEDP) units scheduled in parallel, com-
pleting a 4×4×4 matrix multiply accumulate per cycle in a 4-stage
pipeline [7, 13]. Fig. 1 illustrates how we adopt a 2×2 grid of FEDP
units to form a Tensor Core Unit (TCU) within a Vortex GPGPU
[16] sub-core in a 4-thread per warp scheduler configuration.

FEDP FEDP

FEDP FEDP

WARP SCHEDULER

REGISTER FILE

MATH DISPATCH UNIT

ALU FPU

TENSOR 

CORE
LOAD/STORE

UNIT

MIO DATAPATHMIO SCHEDULER

Figure 1: Sub-Core in the Vortex TCU Extended Architecture

To address the lack of high-performance fused dot product im-
plementations in the open-source GPGPU design space:

• We propose a configurable 4-stage fused dot product ar-
chitecture supporting low-precision (FP16/BF16/FP8/BF8)
multiplication with FP32 accumulation; implemented as part
of the Vortex GPGPU’s in development TCU extension [15]

• We describe a unified pipeline methodology for integrat-
ing integer arithmetic within the floating-point datapath,
incurring minimal overhead by maximizing resource reuse

• We demonstrate significant performance improvements over
an equivalent Berkeley HardFloat [6] based implementation,
achieving 362.2MHz maximum operational frequency and
1.448 GFLOPS single-cycle throughput

2 Mixed-Precision Floating-Point Datapath
2.1 Key Arithmetic Submodules
The floating-point dot product pipeline requires several multi-
operand additions. Initially, we adopted a 2-operand adder reduction
tree structure, which exhibited high latency due to accumulated
carry propagation delays. We found Carry-Save Adders (CSAs)
to be particularly suitable for our use case since they optimally
reduce multiple operands without prior carry dependencies. The
CSA uses recursively generated 4:2 compressors, with 3:2 compres-
sors (Full Adders) handling remaining 3-operand cases, before final
summation via Kogge-Stone Adders (KSAs). KSAs outperform
Carry-Look-Ahead designs by sacrificing area efficiency to achieve
lower fanout at every stage due to their parallel prefix tree struc-
tures. We also implementWallace Tree Multiplierswhose partial
products are reduced effectively using CSA structures. We decide
against incorporating Radix-4 booth recoding in our design, since
the bit-pair encoding overhead outweighs the benefit of halving
partial products at our target 4-11 bit widths.

2.2 Low-Precision Multiplication, Maximum
Exponent and Significand Alignment

The first two pipeline stages perform low-precision multiplication
in parallel to finding the maximum exponent for significand align-
ment. Inputs are packed as FP16/BF16 pairs or FP8/BF8 quads per
32-bit register. Dedicated Wallace tree multipliers process full man-
tissas (including implicit bits) for each dot product element, with
FP8/BF8 formats requiring additional multiplication and summa-
tion to maintain pipeline consistency. Format selection multiplexers
route the results using 4-bit selectors, hence generating raw E8M25
intermediates for accumulation. Exponent addition and FP32 expo-
nent bias conversion (as required) are performed as follows:

𝐸𝑋𝑃𝐹𝑃32 = 𝐸𝑋𝑃𝐴 + 𝐸𝑋𝑃𝐵 + 𝐵𝐼𝐴𝑆𝐹𝑃32 − (2 × 𝐵𝐼𝐴𝑆𝐹𝑃16) + 1



Vortex Workshop MICRO ’25, October 18, 2025, Seoul, Korea Nikhil Rout and Blaise Tine

VA

VB

C

D

Figure 2: Mixed-Precision Fused Dot Product 4-Stage Pipeline Architecture

Maximum exponent identification builds upon a novel subtractor-
based comparator architecture [14] computing all N×N pairwise
exponent differences concurrently. Each comparison generates a
sign bit indicating relative magnitude, thus forming a difference
matrix. The maximum exponent index is determined through com-
binational logic that finds the element where all left comparisons
are negative (1) and all right comparisons are positive (0), produc-
ing a one-hot selection vector. This approach provides O(1) depth
versus traditional reduction tree comparator schemes while also
computing shift amounts by simply negating the stored differences.
Product significands are then aligned using these shift amounts
and sign-extended before passing to the next stage.

2.3 Accumulation, Normalization and Rounding
Traditional approaches separately accumulate the addend "C" after
dot product summation, requiring additional 2-operand alignment,
normalization, and rounding that increases both rounding error and
critical path delay. Our design integrates addend processing from
the first pipeline stage, where C’s exponent participates in max-
imum exponent finding and its significand undergoes alignment
and sign-extension alongside product terms. The 25-bit aligned,
sign-extended significands and addend are further sign-extended
(FP) or zero-extended (INT) to 25 + log2 𝑁 -bits to handle signed
arithmetic correctly. The multi-operand summation utilizes the
recursive 4:2 CSA with 3:2 fallback to produce the accumulation
result. Finally, standard Leading Zero Counter (LZC) normalization
and Round-to-nearest-even (RNE) rounding is performed.

3 Fusing the Integer Pipeline
Integer dot product operations require multiple arithmetic compo-
nents already present in the FP datapath [3, 4]. Fusing both pipelines
omits the need for an arbiter and scheduling two separate execution
units via the same interface. We support INT8 and UINT4 formats,
with INT8 inputs undergoing two’s complement conversion be-
fore multiplication to maintain compact bit-width configurations.
Products are sign-extended to 25 bits for accumulator compatibil-
ity. Rather than forwarding the complete 32-bit addend C to the
final stage, we employ a novel splitting strategy that partitions C
addition into two components. The lower 25 bits accumulate in
the existing FP accumulation module, while only the upper 7 bits
and product sign bits propagate through the pipeline, reducing
intermediate register overhead. The final integer result’s upper 7
bits are constructed in parallel with FP normalization and rounding,
before concatenation with the lower 25-bit accumulation result.

4 Evaluation
We evaluate our FEDP design against equivalent HardFloat [6] and
Xilinx DSP IP based discrete implementations, targeting 300MHz
clock frequency on the AMD Xilinx Alveo U55C FPGA.

Table 1: Comparison of Timing Reports (FP16/BF16)

Version Critical Path 𝐹𝑚𝑎𝑥 Latency Throughput1
(ns) (MHz) (cycles) (GFLOPS)

Xilinx DSP 2.965 337.3 42 0.128
HardFloat 3.679 271.8 13 0.334
Proposed 2.761 362.2 4 1.448

Xilinx DSP HardFloat Proposed*

0 50 100 500 1K 5K 10K 50K

Flip-Flops

DSP Blocks

Total LUTs

  Resource Utilization

Figure 3: Comparison of Resource Utilization Reports2

5 Related Work
Although numerous efforts have optimized mixed-precision Fused-
Multiply-Add and dot product units [2, 9, 14, 17], many academic
projects involving transprecision computing, including Gemmini
[5], Virgo [8], and Rocket Chip [1], still rely on Berkeley HardFloat
modules [6]. Similarly, another Tensor Core implementation inte-
grated into the Vortex framework [11] utilized FPnew [10]. These
discrete approaches suffer from high latency, accumulated rounding
errors, and poor area efficiency compared to our fused architecture.

6 Conclusion
This work presents a configurable high-performance fused dot
product microarchitecture. Future work includes exploring shared
significand multipliers, sparse-enabled FEDP and energy efficiency.
1Single-cycle Throughput = (16 / Latency) × 𝐹𝑚𝑎𝑥 )
2Proposed includes FP8/BF8/INT8/UINT4 support LUT count



A Configurable Mixed-Precision Fused Dot Product Unit for GPGPU Tensor Computation Vortex Workshop MICRO ’25, October 18, 2025, Seoul, Korea

References
[1] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html

[2] Luca Bertaccini, Gianna Paulin, Matheus Cavalcante, Tim Fischer, Stefan Mach,
and Luca Benini. 2024. MiniFloats on RISC-V Cores: ISA Extensions With Mixed-
Precision Short Dot Products. IEEE Transactions on Emerging Topics in Computing
12, 4 (2024), 1040–1055. https://doi.org/10.1109/TETC.2024.3365354

[3] Tom M. Bruintjes, Karel H. G. Walters, Sabih H. Gerez, Bert Molenkamp, and
Gerard J. M. Smit. 2012. Sabrewing: A lightweight architecture for combined
floating-point and integer arithmetic. ACM Trans. Archit. Code Optim. 8, 4, Article
41 (Jan. 2012), 22 pages. https://doi.org/10.1145/2086696.2086720

[4] Stef Cuyckens, Xiaoling Yi, Nitish Satya Murthy, Chao Fang, and Marian Verhelst.
2025. Efficient Precision-Scalable Hardware for Microscaling (MX) Processing in
Robotics Learning. arXiv:2505.22404 [cs.AR] https://arxiv.org/abs/2505.22404

[5] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav
Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou, Colin
Schmidt, Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste
Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2021. Gemmini: Enabling
Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration. In
Proceedings of the 58th Annual Design Automation Conference (DAC).

[6] John R. Hauser. 2019. Berkeley HardFloat Floating-Point Arithmetic Package, Re-
lease 1. https://www.jhauser.us/arithmetic/HardFloat.html. Accessed: September
5, 2025.

[7] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking.
arXiv:1804.06826 [cs.DC] https://arxiv.org/abs/1804.06826

[8] Hansung Kim, Ruohan Richard Yan, Joshua You, Tieliang Vamber Yang, and
Yakun Sophia Shao. 2025. Virgo: Cluster-level Matrix Unit Integration in
GPUs for Scalability and Energy Efficiency. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS ’25). As-
sociation for Computing Machinery, New York, NY, USA, 1382–1399. https:
//doi.org/10.1145/3676641.3716281

[9] Qiong Li, Chao Fang, and Zhongfeng Wang. 2023. PDPU: An Open-Source Posit
Dot-Product Unit for Deep Learning Applications. In 2023 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, USA, 1–5. https://doi.org/10.
1109/ISCAS46773.2023.10182007

[10] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. 2020. Fpnew: An
open-source multiformat floating-point unit architecture for energy-proportional
transprecision computing. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 29, 4 (2020), 774–787.

[11] Abubakr Nada, Giuseppe Maria Sarda, and Erwan Lenormand. 2025. Cooperative
Warp Execution in Tensor Core for RISC-V GPGPU. In 2025 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 1422–1436. https:
//doi.org/10.1109/HPCA61900.2025.00107

[12] NVIDIA Corporation. 2017. NVIDIA Tesla V100 GPU Architecture. Techni-
cal Report. https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[13] MdAamir Raihan, Negar Goli, and TorM. Aamodt. 2019. Modeling Deep Learning
Accelerator Enabled GPUs. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 79–92. https://doi.org/10.1109/ISPASS.
2019.00016

[14] Jongwook Sohn and Earl E. Swartzlander. 2016. A Fused Floating-Point Four-
Term Dot Product Unit. IEEE Transactions on Circuits and Systems I: Regular
Papers 63, 3 (2016), 370–378. https://doi.org/10.1109/TCSI.2016.2525042

[15] Blaise Tine and Nikhil Rout. 2025. Vortex GPGPU Tensor Core Unit Extension
FEDP DRL RTL Backend. https://github.com/vortexgpgpu/vortex/tree/bug_fixes/
hw/rtl/tcu/drl.

[16] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon.
2021. Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual
Event, Greece) (MICRO ’21). Association for Computing Machinery, New York,
NY, USA, 754–766. https://doi.org/10.1145/3466752.3480128

[17] Hao Zhang, DongdongChen, and Seok-BumKo. 2019. EfficientMultiple-Precision
Floating-Point Fused Multiply-Add with Mixed-Precision Support. IEEE Trans.
Comput. 68, 7 (2019), 1035–1048. https://doi.org/10.1109/TC.2019.2895031

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1109/TETC.2024.3365354
https://doi.org/10.1145/2086696.2086720
https://arxiv.org/abs/2505.22404
https://arxiv.org/abs/2505.22404
https://www.jhauser.us/arithmetic/HardFloat.html
https://arxiv.org/abs/1804.06826
https://arxiv.org/abs/1804.06826
https://doi.org/10.1145/3676641.3716281
https://doi.org/10.1145/3676641.3716281
https://doi.org/10.1109/ISCAS46773.2023.10182007
https://doi.org/10.1109/ISCAS46773.2023.10182007
https://doi.org/10.1109/HPCA61900.2025.00107
https://doi.org/10.1109/HPCA61900.2025.00107
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.1109/ISPASS.2019.00016
https://doi.org/10.1109/ISPASS.2019.00016
https://doi.org/10.1109/TCSI.2016.2525042
https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/tcu/drl
https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/tcu/drl
https://doi.org/10.1145/3466752.3480128
https://doi.org/10.1109/TC.2019.2895031

	Abstract
	1 Introduction
	2 Mixed-Precision Floating-Point Datapath
	2.1 Key Arithmetic Submodules
	2.2 Low-Precision Multiplication, Maximum Exponent and Significand Alignment
	2.3 Accumulation, Normalization and Rounding

	3 Fusing the Integer Pipeline
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

